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The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand
canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding
mechanism, as an extension of the two-dimensional hard-disk melting problem. We find that while there is
pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not increase in width,
contrary to 3D polydisperse hard spheres. The point where the Young’s modulus is low enough for the
dislocation unbinding to occur moves with the apparent melting point, but stays within the density gap, just
like for the monodisperse hard-disk system. Additionally, we find that throughout the accessible polydispersity
range, the bound dislocation-pair concentration is high enough to affect the dislocation-unbinding melting as
predicted by Kosterlitz, Thouless, Halperin, Nelson, and Young.
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I. INTRODUCTION

In 1930s, Landau and Peierls showed that two-
dimensional(2D) solids are qualitatively different from their
3D counterpart, as they lack long-ranged positional order
(see, e.g., Ref.[1]). However, 2D crystals do have long-
ranged bond-orientational order and, in this respect, they dif-
fer from the isotropic liquid phase where both translational
and bond-orientational order are short ranged.

In 1970s, Kosterlitz and Thouless suggested that melting
of two-dimensional crystals may be quite different from 3D
melting. In particular, they proposed that melting in two di-
mensions may proceed via a continuous dislocation-
unbinding transition.

Kosterlitz and Thouless[2,3] showed that the free energy
associated with a single dislocation becomes negative when

K , 16pkBT, s1d

whereK is the Young’s modulus of the crystal. At the point
whereK=16pkBT, dislocation pairs can unbind and, as solid
with free dislocations “flow” under shear, Kosterlitz and
Thouless interpreted this temperature as the melting point. In
a more detailed analysis, Halperin and Nelson[2] and Young
[4] showed that dislocation unbinding is not enough to com-
plete the melting process. At the point where the condition of
Eq. (1) is first satisfied, the system undergoes a(continuous)
transition from a 2D crystal to a hexatic phase. The hexatic
phase is characterized by short-ranged(exponentially decay-
ing) positional order, but quasi-long-ranged(algebraically
decaying) orientational order: the positional order is de-
stroyed by the presence of the unbound dislocations. A sec-
ond(continuous) phase transition is required to transform the
hexatic phase into an isotropic liquid with short-ranged
bond-orientational order.

The Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY ) theory makes precise predictions about the behav-
ior of the correlation functions of both the translational and
orientational order parameters. It should be stressed, how-
ever, that the KTHNY theory describes only a possible sce-
nario: it is also possible that one or both of the continuous

transitions are of first order, and even that there is a direct
first-order transition from the crystal to the isotropic fluid.

The KTHNY predictions sparked off an intensive search
for real or model systems that would exhibit this two-stage
melting process(for an early review, see Ref.[5]. More re-
cent examples can be found in Refs.[6–9]).

Surprisingly, however, there is still no satisfactory answer
to the question whether the KTHNY scenario applies even to
the simplest of all two-dimensional model systems, namely,
hard, elastic disks. In fact, this system was the very first to be
studied in any computer simulation[10].

The reason why it is difficult to determine the nature of
the melting transition is that finite-size effects tend to ob-
scure the distinction between first order and continuous melt-
ing in 2D systems(see Ref.[5]).

In the case of hard disks, the early work by Alder and
Wainwright suggested that the hard-disk melting transition
was of first order[11] (in the very early work of Metropolis
et al. [10], the computing power was insufficient to draw
meaningful conclusions about the nature of the melting tran-
sition). The hard-disk melting problem was revisited many
times after the suggestion of the KTHNY scenario, but the
evidence is still ambiguous. Evidence for continuous melting
was reported in Ref.[12], while evidence for a first-order
phase transition was presented in Refs.[13–16]. In addition,
several publications could not distinguish between the two
scenarios[17–19]. More recently, there has been some evi-
dence for the KTHNY scenario[20–22] but the matter still
seems far from settled.

One possible route to tackle this problem would be to
consider hard disks as a special case of a more general class
of systems, and study possible trends in the phase behavior
of this generalized model. In the present case, we consider
the 2D hard-disk system as a special case of polydisperse
disks. In 3D hard spheres, the melting transition is of first
order. As the polydispersity is increased the difference in
volume fraction of the coexisting solid and liquid phases
widens with increasing polydispersity[23,24]. One might ex-
pect similar behavior in two dimensions if the solid-liquid
transition would be of first order.
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While polydispersity in two-dimensional systems has
been studied before, it was in the context of melting by in-
creasing size dispersity for Lennard-Jones systems[25] or in
the context of a possible glass transition[26,27]. In the
present paper, we examine the phase behavior of polydis-
perse hard-disk systems.

II. THE SYSTEM

A. The semigrand canonical ensemble

The model for polydispersity is based on the semigrand
canonical ensemble[28]; this ensemble has previously been
used to study the phase diagram of polydisperse 3D hard
spheres[23,24]. The semigrand canonical ensemble can be
seen as a hybrid version of the canonical ensemble and the
grand canonical ensemble. It is characterized by a thermody-
namic potentialX that satisfies the following fundamental
thermodynamic relation[29]:

dX= − SdT− PdV−E Nssddmssdds. s2d

HereS is the entropy of the system,T the temperature,P the
pressure, andV the volume.Nssdds denotes the number of
particles with diameter betweens ands+ds andmssd is the
chemical potential of particles with diameters. We now add
and subtract a term containing the chemical potential of a
reference speciess0 from the complete differential:

dX= − SdT− PdV− Ndmss0d −E NssddDmssdds, s3d

where we replacemssd−mss0d with Dmssd. We now per-
form a Legendre transformation to a new ensemble that has
N as a thermodynamic control parameter instead ofmss0d
(andP instead ofV):

dY= − SdT+ VdP+ mss0ddN−E NssddDmssdds, s4d

which, in explicit form, becomes(with the Euler equation)

YsN,Dmssd,P,Td = U − TS+ PV+ Nmss0d

−E NssdDmssdds

= Nmss0d. s5d

The partition sum for this ensemble is

YsN,Dmssd,P,Td

=E dsNE dVE dsNexp „− bhPV+ UsV,sNd

− DmssdNssdgj, s6d

with Y=−kBT ln Y. For simulation purposes, the semigrand
canonical ensemble can be interpreted as the one where there
is constant number of particles that can change identity. This
identity switching can be an extra move in a Monte Carlo
simulation; in a polydisperse mixture, this would amount to a

particle size change with an acceptance criterion based on
the functional form for the chemical potentialDmssd.

As in Ref. [23], we use the following functional form for
the chemical potential:

Dmssd = − kBT
ss − s0d2

2n2 , s7d

which, at zero density, will give a Gaussian particle size
distribution according to the partition sum of Eq.(6). In
practice, the size distribution is Gaussian-like at the densities
of the crystalline phase.

B. Order parameters

For the study of the properties of the phases and the phase
transitions, some order parameters have been used, which are
standard in the studying of 2D melting[5] and for which the
KTHNY melting scenario makes explicit predictions[2]. We
define then-fold bond-orientational order atxi, the position
of particle i, as

cnsxid =
1

Ni
o
j=1

Ni

einu jsx
id, s8d

whereNi is the number of neighbors andu jsxid is the angle
between an arbitrary(fixed) axis and the line connecting par-
ticle i with its j th neighbor; two particles are neighbors if
they share a Voronoi cell edge. For systems that tend to crys-
tallize into triangular lattices, the leading bond-order param-
eter is the one for whichn=6. The global value of the order
parameter is simply the mean of the local values.

The positional order is measured using the static structure
factor Ssqd at one specific scattering vectorq equal to a
reciprocal lattice vector of a perfect crystal with orientation
and lattice spacing taken from the system. To check for hex-
agonal crystalline positional order, the lattice vectora0 is set
to its ideal value for a given packing fraction:

a0 = Sp/Î12

h
D1/2

. s9d

The crystal orientation is taken from the mean angle obtained
from the global hexagonal bond-orientational order param-
eter:

C6 =
1

N
o
i=1

N

c6sxid, s10d

which specifies the orientation of one of the six equivalent
crystal axes within an angular range 0øa,p /3. Once the
average orientation of the nearest-neighbor “bonds”a0 has
been specified, it is straightforward to deduce the orientation
of the corresponding reciprocal lattice vectorG through
G ·a0=2p. The positional order parameterz of the crystal is
then given by

zsxid = eiG·xi . s11d

Radial correlation functions of the order parameters are de-
fined as
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g6srd = kc6
*s0dc6srdl/gsrd, s12d

zsrd = kz*s0dzsrdl/gsrd. s13d

In two-dimensional systems,z is expected to decay to zero,
either exponentially(short ranged order) or algebraically
(quasi-long-ranged). The KTHNY melting scenario makes
predictions for the decay of the orientational order in the
hexatic and phase:g6srd, r−h6 with h6→ 1

4 at the melting of
the hexatic phase into the liquid phase[2,5].

C. Elasticity

Equation(1) provides a very useful test to decide whether
or not a 2D melting can be of the KTHNY type. If we find
that Young’s modulus drops below the “magical” value of
16pkBT in an otherwise stable solid, then it is very likely that
this solid melts by dislocation unbinding. Conversely, if we
find that this magical value is only crossed at densities where
we know that the isotropic liquid phase is thermodynami-
cally stable, then it is reasonable to assume that melting is a
first-order transition. Often, however, the simulations do not
provide a clear answer, as the point whereK=16pkBT is
located in the intermediate density regime that may either be
a two-phase region separating two stable phase or the do-
main of the elusive hexatic phase.

The Young’s modulus is defined through the shearslLd
and bulksmLd Lamé elastic constants in 2D:

K =
4a0

2mLsmL + lLd
2mL + lL

ø 16p, s14d

wherea0 is the equilibrium lattice spacing. The Lamé elastic
constants are related to the second-order elastic constants
(i.e., the elastic constants defined by the second derivative of
the free energy to the Lagrangian strain) through

C11 = lL + 2mL,

C12 = lL,

C44 = mL − P. s15d

The theory of the KTHNY scenario is based on a group
renormalization of both the Young’s modulus and the dislo-
cation fugacity

y = e−bEc, s16d

whereEc is the core energy of a dislocation. As the length
scale of the renormalization is increased towards infinity, the
dislocation fugacity and the elastic constants that constitute
K tend to their “renormalized” values, where the(long-
range) effect of (presumably low-concentration) dislocations
is properly taken into account.

The elastic constants measured in this work, although cal-
culated at finite sizes, should be close to their renormalized
values because of the high concentration of dislocations in
the hard-disk system, as will be shown in Sec. III.

When specifying elastic constants of a polydisperse sys-
tem, we should distinguish between “quenched” and “an-

nealed” elastic constants. Quenched elastic constants mea-
sure the second strain derivative of the free energy of a
polydisperse crystal with a “frozen” size distribution; i.e., the
particle size distribution is assumed not to respond to the
deformation. In contrast, the “annealed” elastic constants
measure the second strain derivative of the semigrand poten-
tial. In this case, the particle size distribution is assumed to
respond to the deformation. The quenched constants are the
ones that are presumably measured in mechanical experi-
ments that probe the elastic deformation of a polydisperse
solid. But the annealed constants describe the equilibrium
state of a deformed polydisperse solid. In order to determine
the critical value for Young’s modulus in a polydisperse 2D
solid, we computed the annealed elastic constants, as these
determine the equilibrium behavior of the system.

To calculate the elastic constants at different polydisper-
sities, a hybrid Monte Carlo–molecular dynamics method
was used, where Monte Carlo runs sampling particle diam-
eters and positions in the strained system were followed by
molecular dynamics runs where the stress tensor was mea-
sured using the instantaneous realization of the particle size
distribution. The algorithm thus effectively calculates the
elastic constants of many realizations of a polydisperse hard-
sphere crystal.

The quenched elastic constants will be larger than the
annealed quantities, because of the concavity of the free en-
ergy. Hence the corresponding quenched Young’s modulus
will only reach the instability limitK=16p at lower densi-
ties.

The strains used in the elastic constant determination were

ai j
1 = S1 + a 0

0 1 + a
D ,

ai j
2 = S1 b

0 1
D , s17d

with a as the(small) strain parameter. The resulting stress
derivatives give us[30]

dT11

da
=

] T11

] a11
1 +

] T11

] a22
1 = C11 + C12 = 2lL + 2mL,

dT12

db
=

] T12

] a12
1 = C44 + P = mL, s18d

allowing us to calculate the Young’s modulus of Eq.(14).

III. SIMULATIONS

The simulations were performed on systems containing
59368=4012 particles, with a chemical potential distribu-
tion width (polydispersity) parametern [see Eq.(7)] varying
betweenn=0.000 25 andn=0.008. For higher values ofn
(higher polydispersities), the equilibration was exceedingly
slow, even with the combined volume-particle radius sam-
pling: equilibration took 1.33106–2.53106 Monte Carlo
(MC) steps per particle and data were sampled during 1
3106 steps per particle; around 20 % of steps were devoted
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to particle radius steps. ForN=4012, the simulation time was
6−8 h on an Athlon 1600+CPU.

Monte Carlo simulations of the semigrand canonical en-
semble of Eq.(6) involve displacement moves, volume
moves, and identity change moves, which in the current con-
text mean particle radius moves. To speed up the simulation,
the coupling between mean particle radius and system size is
exploited to remove the global volume moves and simulta-
neous system+particle size scaling was introduced. This im-
proves the statistics of sampling considerably[23]. It turns
out that, in practice, a real simultaneous system+particle size
scaling is at least as fast as the analytical integration of the
scaling part of the partition sum also described in Ref.[23].

The resulting equations of state are shown in Fig. 1. From
this figure, it is clear that the phase transition, which is
around packing fractionh<0.70 for the monodisperse case
[17–19], shifts to higher packing fractions and higher pres-
sures with increasing polydispersity. Atn=0.008, the system
cannot be made to freeze at all. A similar phenomenon was
observed in Ref.[23]—it is due to the choice of the func-
tional form for the chemical potential[Eq. (7)]. In addition,
for n=0.007, it is extremely difficult to equilibrate the sys-
tem properly in the vicinity of the phase transition.

As is the case for 3D spheres, the liquid branches of the
equations of state very nearly superimpose[23]. However,
near the phase transition, the pressure appears to increase
slightly with polydispersity. Upon further compression, the
system undergoes a phase transition with an apparent density
gap. However, because of the relatively small system size,
the presence of such an apparent density gap is also compat-
ible with continuous melting. We find that the density gap
decreases with increasing polydispersity.

In Fig. 2 we plot the variation in polydispersity upon
freezing. As a measure for the polydispersity, we uses
;ks2l / ksl2−1. In the same figure, the apparent density gap
is also shown(the borders of the density gap shown here are
simply the solid with the lowest packing fraction and the
liquid with the highest packing fraction found in the simula-

tions). As in the 3D case[23,24], the freezing point moves to
higher volume fractions as the polydispersity is increased
and size fractionation is also increased. But, whereas the
density gap widens upon freezing in 3D, it appears, if any-
thing, to decrease in 2D(except for the case ofn=0.007,
which seems to be poorly equilibrated). Additionally, the
maximum polydispersity at which the solid seems to remain
stable (around 8 %) is considerably higher than in 3D
s5.7 %d.

In the semigrand canonical ensemble, the system equili-
brates to a mean particle size, dependent on pressure andn.
Figure 3 shows this mean particle size as a function of pack-
ing fraction: the phase transitions show up as jumps in the
packing fraction, but not in the mean particle size. This
means that there is no particle size fractionation(the mean of
the particle diameter distribution does not change) while
there is, as can be seen in Fig. 2, polydispersity fractionation
(the width of the particle diameter distribution changes).

An example of the behavior of the order parameters near
the phase transition is shown in Fig. 4. The positional and
orientational order both increase sharply(but not quite si-
multaneously) in the region of the phase transition, similar to
what one finds for monodisperse hard disks. Although the
decay of the orientational correlation functiong6srd goes
with r−1/4, as predicted by the KTHNY scenario for the
hexatic at the hexatic-crystal transition, this seems to be a
coincidence, because a further simulation of the same con-
figuration yields a different(but still algebraic) decay rate.
This indicates that the typical decay “time” of fluctuations in
the system exceeds the typical length of the(rather long)
simulations.

We stress that all observations reported thus far are con-
sistent with either a KTHNY scenario or a weak first-order

FIG. 1. Calculated equations of state(with normalized pressure)
for varying polydispersity control parametern. System size is 4012
particles.

FIG. 2. Packing fractionh as a function of polydispersitys for
varying n, with N=4012. The boundaries of the apparent density
gap are shown as the solid lines; the density gap of the monodis-
persess=0d case is taken from data by Jaster[18], with N=4096.
The dashed line shows the location of packing fractions(with
matching polydispersities) extrapolated to beK=16p; the gray area
denotes an estimate of the size of the error. The black circle shows
the location of theK=16p point obtained using a larger system size
sN=4012d for the elasticity simulations.
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transition. The KTHNY scenario, however, is based on the
assumption that the concentration of bound dislocations in
the crystal phase is low; dislocation interaction is not taken
into account and the Kosterlitz-Thouless normalization is
based on an expansion in the dislocation-unbinding length
which may be unrealistically long for high dislocation con-
centrations. We measured the concentration of bound dislo-
cation pairs(see Fig. 5). In the figure, we show the concen-
tration of seven coordinated particles. Because in the crystal
the number of eight or more coordinated particles is negli-
gible, and as the number of point defects turns out to be an
order of magnitude lower than the number of bound disloca-
tions [19], the number of seven coordinated particles is a
good measure of the dislocation count. At the melting point
(the boundary of the apparent density gap) the dislocation
concentration varies from 1 % to more than 3 %. As the con-
centration of dislocation pairs depends sensitively on the dis-
location core energy, this suggests that the core energy is
rather low. Note that a core energy less thans2-4dkBT is not
compatible with KTHNY melting[31,32].

Neglecting the dislocation-dislocation interaction(a very
crude approximation), but including the internal elastic en-
ergy and entropy of dislocation pairs[20,33], this defect den-

sity would be consistent with a core energy of approximately
5kBT over the full polydispersity range. This, however, is a
crude approximation and the real core energy may be several
kBT off. The value is compatible with both the value of 6kBT
given in Ref.[20] and the value of 11kBT at a much higher
packing fraction of 0.82 calculated in Ref.[34].

IV. ELASTIC CONSTANTS

The elastic constants were measured using the method
described in Sec. II C, using simulations of 412 particles,
equilibrating for 43106 MC steps and 43104 molecular dy-
namics (MD) collisions per particle and measuring up 5
3106 MC steps and 1.53106 MD collisions per particle.
Earlier work[19] had shown that the elastic constants are not
significantly affected by the presence of point defects such as
vacancies. Away from the KTHNY transition, the elastic con-
stants are not very sensitive to finite-size effects[14]. Of
course, this is not true close to a KTHNY transition, but this
will turn out to be less relevant for the present system be-
cause we always observe melting before we get into the
“danger zone.”

FIG. 3. Mean particle diameterksl as a function of packing
fraction h for the different values of the polydispersity control pa-
rametern.

FIG. 4. Example of the decay of the orientational(left) and positional(right) order parameters over the phase transition forn=0.006. The
decay of the positional order parameter,g6srd, goes asg6srd~ r−1/4 at the intermediate pressurePks2l=12.7. The positional order parameters
decay exponentially for both lower pressures.

FIG. 5. Concentration of seven coordinated particlesx7 (a mea-
sure for the number of dislocations) as a function of packing frac-
tion relative to the melting packing fraction(determined by the
boundaries of the apparent density gap).
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The results of the simulations are shown in Fig. 6; here an
exponential of the Young’s modulusk=s1−16p /KdnKT,
wherenKT is the Kosterlitz-Thouless renormalization expo-
nent, which has a value ofnKT<0.369 63[2]. This form is
chosen because close to the KTHNY transition, the Young’s
modulus—expressed as function of the difference between
the packing fractionh and the packing fraction at the
KTHNY, hKT—behaves as[5]

K

16p
=

1

1 − csh − hKTdnKT
. s19d

The measuredk values are then fitted to a second-order poly-
nomial. The results for the monodisperse casesn=0d are

similar to those by Wojciechowskiet al. [14,35] and by
Bates and Frenkel[19].

To check for finite-size effects in the elastic constants cal-
culations, the calculations forn=0.004 were also done with
4012 particles. The results are shown in Fig. 6 and in Fig. 2;
the K=16p extrapolation is very similar to the smaller 412
particle system and agrees within the error margin.

From the locations of theK=16p line in Fig. 2 it is clear
that the situation with respect to the type of phase transition
is, even for higher polydispersities, similar to that of the
monodisperse system; the points seem to follow—within the
statistical uncertainties—not only the loci of the phase tran-
sitions, but also the position within the density gap.

V. CONCLUSION

In this paper, we explored the effect of polydispersity on
the nature of the 2D melting transition is a system of 2D hard
disks.

We find that the solid-liquid phase transition shifts to
higher packing fractions as the polydispersity increases, and
that polydispersity fractionation takes place in the region of
the phase transition. The maximum polydispersity at which
the solid can be stable is larger than in 3D hard spheres.

The density-polydispersity gap, be it real or apparent,
does not seem to increase in size with increasing polydisper-
sity. The fact that the points for whichK=16p appear to be
located in the two-phase region supports the assumption that
the melting transition is of first order. Even if this should not
be the case, the high dislocation concentration will presum-
ably have an effect on the KTHNY predictions.
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