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Melting of polydisperse hard disks
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The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand
canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding
mechanism, as an extension of the two-dimensional hard-disk melting problem. We find that while there is
pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not increase in width,
contrary to 3D polydisperse hard spheres. The point where the Young’s modulus is low enough for the
dislocation unbinding to occur moves with the apparent melting point, but stays within the density gap, just
like for the monodisperse hard-disk system. Additionally, we find that throughout the accessible polydispersity
range, the bound dislocation-pair concentration is high enough to affect the dislocation-unbinding melting as
predicted by Kosterlitz, Thouless, Halperin, Nelson, and Young.
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I. INTRODUCTION transitions are of first order, and even that there is a direct
first-order transition from the crystal to the isotropic fluid.

In 1930s, Landau and Peierls showed that two- o . )
. . X " . . The KTHNY predictions sparked off an intensive search
dimensional2D) solids are qualitatively different from their TR
for real or model systems that would exhibit this two-stage

3D counterpart, as they lack long-ranged positional Ordaneltin rocesgfor an early review, see Ref5]. More re-
(see, e.g., Ref[1]). However, 2D crystals do have long- ent egapm les can be four):d in Re[%S—Q]) '
ranged bond-orientational order and, in this respect, they dif® P Cen

fer from the isotropic liquid phase where both translational Surpnsmgly, however, there is still no sa_usfactqry answer
: . to the question whether the KTHNY scenario applies even to
and bond-orientational order are short ranged.

In 1970s, Kosterlitz and Thouless suggested that meltin he simplest of all two-dimensional model systems, namely,

of two-dimensional crystals may be quite different from 3D ard, elastic disks. In fact, this system was the very first to be

melting. In particular, they proposed that melting in two di- studied in any computer ;lmulat|qa0]. .
. . ' . . The reason why it is difficult to determine the nature of
mensions may proceed via a continuous dislocation;

S - the melting transition is that finite-size effects tend to ob-
unbinding transition.

Kosterlitz and Thoules2,3] showed that the free energy scure the distinction between first order and continuous melt-
associated with a single dislocation becomes negative whelfd ' 2D systemgsee Re_f.[5]).
In the case of hard disks, the early work by Alder and
K < 16mksT, (1)  Wainwright suggested that the hard-disk melting transition
was of first ordef[11] (in the very early work of Metropolis
whereK is the Young's modulus of the crystal. At the point et al. [10], the computing power was insufficient to draw
whereK =16mkgT, dislocation pairs can unbind and, as solid meaningful conclusions about the nature of the melting tran-
with free dislocations “flow” under shear, Kosterlitz and sition). The hard-disk melting problem was revisited many
Thouless interpreted this temperature as the melting point. Itimes after the suggestion of the KTHNY scenario, but the
a more detailed analysis, Halperin and Nel§hand Young evidence is still ambiguous. Evidence for continuous melting
[4] showed that dislocation unbinding is not enough to comwas reported in Ref[12], while evidence for a first-order
plete the melting process. At the point where the condition ofphase transition was presented in R¢f8-16. In addition,
Eq. (1) is first satisfied, the system undergoe&antinuou$  several publications could not distinguish between the two
transition from a 2D crystal to a hexatic phase. The hexaticcenario§17-19. More recently, there has been some evi-
phase is characterized by short-rangexponentially decay- dence for the KTHNY scenarif20-27 but the matter still
ing) positional order, but quasi-long-rang€digebraically seems far from settled.
decaying orientational order: the positional order is de- One possible route to tackle this problem would be to
stroyed by the presence of the unbound dislocations. A se@onsider hard disks as a special case of a more general class
ond(continuou$ phase transition is required to transform the of systems, and study possible trends in the phase behavior
hexatic phase into an isotropic liquid with short-rangedof this generalized model. In the present case, we consider
bond-orientational order. the 2D hard-disk system as a special case of polydisperse
The Kosterlitz-Thouless-Halperin-Nelson-Young disks. In 3D hard spheres, the melting transition is of first
(KTHNY) theory makes precise predictions about the behaverder. As the polydispersity is increased the difference in
ior of the correlation functions of both the translational andvolume fraction of the coexisting solid and liquid phases
orientational order parameters. It should be stressed, howvidens with increasing polydispersif23,24. One might ex-
ever, that the KTHNY theory describes only a possible scepect similar behavior in two dimensions if the solid-liquid
nario: it is also possible that one or both of the continuougransition would be of first order.
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While polydispersity in two-dimensional systems hasparticle size change with an acceptance criterion based on
been studied before, it was in the context of melting by in-the functional form for the chemical potentiaju(o).
creasing size dispersity for Lennard-Jones syst@ffsor in As in Ref.[23], we use the following functional form for
the context of a possible glass transitig?6,27. In the the chemical potential:
present paper, we examine the phase behavior of polydis-

-di (00— 00)2
perse hard-disk systems. Au(a) =—kgT , )
212
Il. THE SYSTEM which, at zero density, will give a Gaussian particle size
' distribution according to the partition sum of E). In
A. The semigrand canonical ensemble practice, the size distribution is Gaussian-like at the densities

The model for polydispersity is based on the semigrand’ the crystalline phase.

canonical ensemblg28]; this ensemble has previously been

used to study the phase diagram of polydisperse 3D hard
sphereqg23,24. The semigrand canonical ensemble can be .
seen as a hybrid version of the canonical ensemble and the FOr the study of the properties of the phases and the phase

grand canonical ensemble. It is characterized by a thermodytansitions, some order parameters have been used, which are

namic potentialX that satisfies the following fundamental Standard in the studying of 2D melti§] and for which the
thermodynamic relatiofi29): KTHNY melting scenario makes explicit predictio[. We

define then-fold bond-orientational order a¢, the position
of particlei, as

B. Order parameters

dX=-SdT- PdV—J N(o)du(o)do. (2)
: 1 N . i

HereSis the entropy of the systeri, the temperature? the In(x') = N 2 entieo, (8)

pressure, an¥ the volume.N(o)do denotes the number of =l

particles with diameter betweenando+do andu(o) isthe  whereN,; is the number of neighbors argi(x) is the angle

chemical potential of particles with diameter We now add  petween an arbitrargfixed) axis and the line connecting par-

and subtract a term containing the chemical potential of aicle i with its jth neighbor; two particles are neighbors if

reference species, from the complete differential: they share a Voronoi cell edge. For systems that tend to crys-
tallize into triangular lattices, the leading bond-order param-

dX=-SdT- PdV- Ndu(oy) -f N(o)sAu(o)do, (3) eter is the one for which=6. The global value of the order

parameter is simply the mean of the local values.

where we replaces(o) - u(ap) with Au(o). We now per- The positional order is measured using the static structure

form a Legendre transformation to a new ensemble that ha@ctor () at one specific scattering vector equal to a

N as a thermodynamic control parameter insteag.af,) reciprocal lattice vector of a perfect crystal with orientation
(and P instead ofV): and lattice spacing taken from the system. To check for hex-

agonal crystalline positional order, the lattice vedgis set

to its ideal value f [ king fraction:
dY= - SdT+ VdP+ M(UO)dN_f N(0)8Au(o)dor, (4) o its ideal value for a given packing fraction

~ 7T/\“"1—2 1/2
which, in explicit form, becomeéwith the Euler equation a0—< 7 ) : 9
Y(N,Au(0),P,T) =U =TS+ PV+ Nu(ay) The crystal orientation is taken from the mean angle obtained
from the global hexagonal bond-orientational order param-
—f N(o)Au(o)do eter:
1 N
=Nu(oy). (5) Wy = NE De(X), (10)
The partition sum for this ensemble is =1
which specifies the orientation of one of the six equivalent
Y(N,Aule),P.T) crystal axes within an angular ranges@ < 77/3. Once the
_ N B average orientation of the nearest-neighbor “borgshas
- f do fdvf ds’exp (- B{PV+U(V,s") been specified, it is straightforward to deduce the orientation
of the corresponding reciprocal lattice vectGr through
~Au(0)N(a)]}, ® G -ay=2r. The positional order parametéiof the crystal is
with Y=—kgT In Y. For simulation purposes, the semigrandthen given by
canonical ensemble can be interpreted as the one where there £(x) = 8% (11)
| - .

is constant number of particles that can change identity. This
identity switching can be an extra move in a Monte CarloRadial correlation functions of the order parameters are de-
simulation; in a polydisperse mixture, this would amount to afined as
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gs(r) :(ll,;(o)%(r))/g(r), (12) nealed” elastic constants. Quenched elastic constants mea-
sure the second strain derivative of the free energy of a
Z(r) =(Z (0)Z(N)Hg(r). (13) polydisperse crystal with a “frozen” size distribution; i.e., the

particle size distribution is assumed not to respond to the

In two-dimensional systemg,is expected to decay to zero, deformation. In contrast, the “annealed” elastic constants
either exponentially(short ranged ordgror algebraically measure the second strain derivative of the semigrand poten-
(quasi-long-ranged The KTHNY melting scenario makes tial. In this case, the particle size distribution is assumed to
predictions for the decay of the orientational order in therespond to the deformation. The quenched constants are the
hexatic and phaseyg(r) ~r~7 with 776%;11 at the melting of ones that are presumably measured in mechanical experi-
the hexatic phase into the liquid phgds5]. ments that probe the elastic deformation of a polydisperse
solid. But the annealed constants describe the equilibrium
state of a deformed polydisperse solid. In order to determine
the critical value for Young’s modulus in a polydisperse 2D

Equation(1) provides a very useful test to decide whethersolid, we computed the annealed elastic constants, as these
or not a 2D melting can be of the KTHNY type. If we find determine the equilibrium behavior of the system.
that Young's modulus drops below the “magical” value of  To calculate the elastic constants at different polydisper-
167kgT in an otherwise stable solid, then it is very likely that sities, a hybrid Monte Carlo—molecular dynamics method
this solid melts by dislocation unbinding. COﬂVEfSG'y, if we was used, where Monte Carlo runs samp]ing partide diam-
find that this magical value is only crossed at densities whergters and positions in the strained system were followed by
we know that the isotropic liquid phase is thermodynami-molecular dynamics runs where the stress tensor was mea-
cally stable, then it is reasonable to assume that melting is gured using the instantaneous realization of the particle size
first-order transition. Often, however, the simulations do nofdistribution. The algorithm thus effectively calculates the
provide a clear answer, as the point whéte 167ksT is  elastic constants of many realizations of a polydisperse hard-
located in the intermediate density regime that may either bgphere crystal.

a two-phase region separating two stable phase or the do- The quenched elastic constants will be larger than the

C. Elasticity

main of the elusive hexatic phase. annealed quantities, because of the concavity of the free en-
The Young's modulus is defined through the shean  ergy. Hence the corresponding quenched Young's modulus
and bulk(u,) Lamé elastic constants in 2D: will only reach the instability limitk =167 at lower densi-
2 ties.
K = dagm (p + M) < 167, (14) The strains used in the elastic constant determination were
2t N
. e . . , . 1 l+a 0
wherea is the equilibrium lattice spacing. The Lamé elastic a = ( 0o 1 +a>’
constants are related to the second-order elastic constants
(i.e., the elastic constants defined by the second derivative of
the free energy to the Lagrangian stnainrough aﬁ - (1 b) (17)
1)
Cra= A +2u, 0
with a as the(small) strain parameter. The resulting stress
Cro= )\, derivatives give ug30]
Cuy=p - P. (15) d4a ﬁail+ Fak, Ci1+ Crp=2N +2u,
The theory of the KTHNY scenario is based on a group
renormalization of both the Young’s modulus and the dislo- dT, 9T, Co4p 19
cation fugacity db  dalk, 44 ML
y=er=, (16) allowing us to calculate the Young’'s modulus of Ef4).
whereE, is the core energy of a dislocation. As the length
s<_:a|e of_ the renor_malization is inc_reased towards infinity,_the Il SIMULATIONS
dislocation fugacity and the elastic constants that constitute
K tend to their “renormalized” values, where thing- The simulations were performed on systems containing
range effect of (presumably low-concentratipulisiocations 59X 68=4012 particles, with a chemical potential distribu-
is properly taken into account. tion width (polydispersity parametew [see Eq(7)] varying

The elastic constants measured in this work, although cabetweenr=0.000 25 andv=0.008. For higher values af
culated at finite sizes, should be close to their renormalize¢higher polydispersitios the equilibration was exceedingly
values because of the high concentration of dislocations islow, even with the combined volume-particle radius sam-
the hard-disk system, as will be shown in Sec. Ill. pling: equilibration took 1.X 10°-2.5x10° Monte Carlo

When specifying elastic constants of a polydisperse systMC) steps per particle and data were sampled during 1
tem, we should distinguish between “quenched” and “an-x 10° steps per particle; around 20 % of steps were devoted
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16 v=0.008 ¢ —— —— 1 076 i Ti ST 1
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FIG. 1. Calculated equations of stateith normalized pressuye
for varying polydispersity control parameter System size is 4012 FIG. 2. Packing fraction; as a function of polydispersity for
particles. varying v, with N=4012. The boundaries of the apparent density

gap are shown as the solid lines; the density gap of the monodis-
to particle radius steps. Fdt=4012, the simulation time was Perse(s=0) case is taken from data by Jasf&g], with N=4096.
6—8 h on an Athlon 1600+ CPU. The dashed line shows the location of packing fractiowith
Monte Carlo simulations of the semigrand canonical enMatching polydispersitigextrapolated to b&=16m; the gray area
semble of Eq.(6) involve displacement moves, volume denotes an estimate of the size of the error. The black circle shows
moves, and identity change moves, which in the C,urrent Ccmt_he location of theéK =16 point obtained using a larger system size

text mean particle radius moves. To speed up the simulatiorgf\lzﬂ'o12 for the elasticity simulations.

the coupling between mean particle radius and system size ifons). As in the 3D cas¢23,24, the freezing point moves to
exploited to remove the global volume moves and simultahigher volume fractions as the polydispersity is increased
neous system+ particle size scaling was introduced. This imand size fractionation is also increased. But, whereas the
proves the statistics of sampling consideraf#g]. It turns  density gap widens upon freezing in 3D, it appears, if any-
out that, in practice, a real simultaneous system + particle sizthing, to decrease in 2except for the case 0f=0.007,
scaling is at least as fast as the analytical integration of thevhich seems to be poorly equilibrajedAdditionally, the
scaling part of the partition sum also described in R28].  maximum polydispersity at which the solid seems to remain
The resulting equations of state are shown in Fig. 1. Fronstable (around 8% is considerably higher than in 3D
this figure, it is clear that the phase transition, which is(5.7 %.
around packing fractiom=~0.70 for the monodisperse case In the semigrand canonical ensemble, the system equili-
[17-19, shifts to higher packing fractions and higher pres-brates to a mean particle size, dependent on pressure.and
sures with increasing polydispersity. At0.008, the system Figure 3 shows this mean particle size as a function of pack-
cannot be made to freeze at all. A similar phenomenon wal$'d fraction: the phase transitions show up as jumps in the
observed in Ref[23]—it is due to the choice of the func- packing fraction, 'but not in thg mean particle size. This
tional form for the chemical potentidEq. (7)]. In addition, means that the_re IS No p_artl_cle Slze fractionatibre mean of
for v=0.007, it is extremely difficult to equilibrate the sys- tEe p‘?‘”'C'e dlart?eter d'.St”Fb.Ut'%n d?ec;s. not _chz?)ng\éyle .
tem properly in the vicinity of the phase transition. there is, as can be seen in Fig. 2, polydispersity fractionation

As is the case for 3D spheres, the liquid branches of thcghe width of the particle diameter distribution changes

" f stat | . 28] H An example of the behavior of the order parameters near
equations of staté very nearly superimp¢2g|. OWEVET,  the phase transition is shown in Fig. 4. The positional and
near the phase transition, the pressure appears to incre

: . . . \ Ffentational order both increase sharphut not quite si-
slightly with polydispersity. Upon further compression, the njtaneouslyin the region of the phase transition, similar to

system undergoes a phase transition with an apparent densijfat one finds for monodisperse hard disks. Although the

gap. However, because of the relatively small system sizjecay of the orientational correlation functiag(r) goes

the presence of such an apparent density gap is also compgjith r-/4, as predicted by the KTHNY scenario for the

ible with continuous melting. We find that the density gaphexatic at the hexatic-crystal transition, this seems to be a

decreases with increasing polydispersity. coincidence, because a further simulation of the same con-
In Fig. 2 we plot the variation in polydispersity upon figuration yields a differentbut still algebrai¢ decay rate.

freezing. As a measure for the polydispersity, we @se This indicates that the typical decay “time” of fluctuations in

=(0?)/{0)*~1. In the same figure, the apparent density gapthe system exceeds the typical length of thather long

is also showr{the borders of the density gap shown here aresimulations.

simply the solid with the lowest packing fraction and the We stress that all observations reported thus far are con-

liquid with the highest packing fraction found in the simula- sistent with either a KTHNY scenario or a weak first-order
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0.04 T T T T y T

+ ——t— " v=00002
v=0.001 |

0.6 L L L . 1 1.04
0.68 0.7 0.72 0.74 0.76 0.78
n
FIG. 3. Mean particle diametelr) as a function of packing FIG. 5. Concentration of seven coordinated partistega mea-
fraction » for the different values of the polydispersity control pa- sure for the number of dislocationas a function of packing frac-
rameterv. tion relative to the melting packing fractiofdetermined by the

boundaries of the apparent density gap

transition. The KTHNY scenario, however, is based on the
assumption that the concentration of bound dislocations ity would be consistent with a core energy of approximately
the crystal phase is low; dislocation interaction is not takerskgT over the full polydispersity range. This, however, is a
into account and the Kosterlitz-Thouless normalization iscrude approximation and the real core energy may be several
based on an expansion in the dislocation-unbinding lengtiRgT off. The value is compatible with both the value d&:&
which may be unrealistically long for high dislocation con- given in Ref.[20] and the value of T at a much higher
centrations. We measured the concentration of bound dislgacking fraction of 0.82 calculated in R¢84].
cation pairs(see Fig. 3. In the figure, we show the concen-
tration of seven (_:oordinated particle_s. Because_ in the crys'gal I\V. ELASTIC CONSTANTS
the number of eight or more coordinated particles is negli-
gible, and as the number of point defects turns out to be an The elastic constants were measured using the method
order of magnitude lower than the number of bound dislocadescribed in Sec. Il C, using simulations of 412 particles,
tions [19], the number of seven coordinated particles is aequilibrating for 4x 10° MC steps and % 10* molecular dy-
good measure of the dislocation count. At the melting pointnamics (MD) collisions per particle and measuring up 5
(the boundary of the apparent density yaipe dislocation X 10° MC steps and 1.5 10° MD collisions per particle.
concentration varies from 1 % to more than 3 %. As the conEarlier work[19] had shown that the elastic constants are not
centration of dislocation pairs depends sensitively on the dissignificantly affected by the presence of point defects such as
location core energy, this suggests that the core energy igcancies. Away from the KTHNY transition, the elastic con-
rather low. Note that a core energy less tlian4)kgT is not  stants are not very sensitive to finite-size effefctd]. Of
compatible with KTHNY melting[31,32. course, this is not true close to a KTHNY transition, but this

Neglecting the dislocation-dislocation interactiGmvery  will turn out to be less relevant for the present system be-
crude approximation but including the internal elastic en- cause we always observe melting before we get into the
ergy and entropy of dislocation paii®0,33, this defect den- “danger zone.”

1 T T T T T 1 T T T T T

oes
P<g>=13.0

= L ] = a4l |
B:o 0.1 S 0.1
P<c>=12.9
P<o =127
0.0l 00 ——=5""To 520 5

FIG. 4. Example of the decay of the orientatioflaft) and positiona(right) order parameters over the phase transition/f00.006. The
decay of the positional order parametgy(r), goes agjg(r) = r~Y* at the intermediate pressuPéo?)=12.7. The positional order parameters
decay exponentially for both lower pressures.
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0.2 T T T T I

similar to those by Wojciechowsket al. [14,35 and by
Bates and Frenkdtl9].

To check for finite-size effects in the elastic constants cal-
culations, the calculations far=0.004 were also done with
4012 particles. The results are shown in Fig. 6 and in Fig. 2;
the K=167 extrapolation is very similar to the smaller 412
particle system and agrees within the error margin.

_ From the locations of th& =16 line in Fig. 2 it is clear
that the situation with respect to the type of phase transition
is, even for higher polydispersities, similar to that of the
monodisperse system; the points seem to follow—uwithin the
- statistical uncertainties—not only the loci of the phase tran-
sitions, but also the position within the density gap.

0.15

v=0 < ———!
v=0.00025 < — —
v=0.001 < ——

0.05

V. CONCLUSION

" 1 " 1 )
0.72 0.73 0.74 n 0.75 0.76 0.77 In this paper, we explored the effect of polydispersity on

the nature of the 2D melting transition is a system of 2D hard
FIG. 6. Fractional exponent of the Young's modulus (1 disks.
- 167/ K)"kT with 1+=0.3696 for the different polydispersities, as ~ We find that the solid-liquid phase transition shifts to
a function of packing fraction. The lines are the fits to determine thehigher packing fractions as the polydispersity increases, and
locations ofK=16m. The points atv=0.004 with the triangles to- that polydispersity fractionation takes place in the region of
gether with the fit shown with the dashed line are results of calcuthe phase transition. The maximum polydispersity at which
lations done with 4012 particles. the solid can be stable is larger than in 3D hard spheres.
The density-polydispersity gap, be it real or apparent,
The results of the simulations are shown in Fig. 6; here afloes not seem to increase in size with increasing polydisper-
exponential of the Young’s modulus=(1-16m/K)*T, sity. The fact that the points for whidi=16+ appear to be
where 7 is the Kosterlitz-Thouless renormalization expo- located in the two-phase region supports the assumption that
nent, which has a value afc;=0.369 63[2]. This form is  the melting transition is of first order. Even if this should not
chosen because close to the KTHNY transition, the Young'®e the case, the high dislocation concentration will presum-
modulus—expressed as function of the difference betweedbly have an effect on the KTHNY predictions.
the packing fraction and the packing fraction at the

KTHNY, 7n«r—Dbehaves ag5] ACKNOWLEDGMENTS
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